Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Chinese Journal of Pediatrics ; (12): 642-647, 2023.
Article in Chinese | WPRIM | ID: wpr-985923

ABSTRACT

Objective: To investigate the clinical features and genetic features of combined oxidative phosphorylation deficiency 32 (COXPD32) caused by MRPS34 gene variation. Methods: The clinical data and genetic test of a child with COXPD32 hospitalized in the Department of Neurology, Children's Hospital, Capital Institute of Pediatrics in March 2021 were extracted and analyzed. A literature search was implemented using Wanfang, China biology medicine disc, China national knowledge infrastructure, ClinVar, human gene mutation database (HGMD) and Pubmed databases with the key words "MRPS34" "MRPS34 gene" and "combined oxidative phosphorylation deficiency 32" (up to February 2023). Clinical and genetic features of COXPD32 were summarized. Results: A boy aged 1 year and 9 months was admitted due to developmental delay. He showed mental and motor retardation, and was below the 3rd percentile for height, weight, and head circumference of children of the same age and gender. He had poor eye contact, esotropia, flat nasal bridge, limbs hypotonia, holding instability and tremors. In addition, Grade Ⅲ/6 systolic murmur were heard at left sternal border. Arterial blood gases suggested that severe metabolic acidosis with lactic acidosis. Brain magnetic resonance imaging (MRI) showed multiple symmetrical abnormal signals in the bilateral thalamus, midbrain, pons and medulla oblongata. Echocardiography showed atrial septal defect. Genetic testing identified the patient as a compound heterozygous variation of MRPS34 gene, c.580C>T (p.Gln194Ter) and c.94C>T (p.Gln32Ter), with c.580C>T being the first report and a diagnosis of COXPD32. His parents carried a heterozygous variant, respectively. The child improved after treatment with energy support, acidosis correction, and "cocktail" therapy (vitaminB1, vitaminB2, vitaminB6, vitaminC and coenzyme Q10). A total of 8 cases with COXPD32 were collected through 2 English literature reviews and this study. Among the 8 patients, 7 cases had onset during infancy and 1 was unknown, all had developmental delay or regression, 7 cases had feeding difficulty or dysphagia, followed by dystonia, lactic acidosis, ocular symptoms, microcephaly, constipation and dysmorphic facies(mild coarsening of facial features, small forehead, anterior hairline extending onto forehead,high and narrow palate, thick gums, short columella, and synophrys), 2 cases died of respiratory and circulatory failure, and 6 were still alive at the time of reporting, with an age range of 2 to 34 years. Blood and (or) cerebrospinal fluid lactate were elevated in all 8 patients. MRI in 7 cases manifested symmetrical abnormal signals in the brainstem, thalamus, and (or) basal ganglia. Urine organic acid test were all normal but 1 patient had alanine elevation. Five patients underwent respiratory chain enzyme activity testing, and all had varying degrees of enzyme activity reduction. Six variants were identified, 6 patients were homozygous variants, with c.322-10G>A was present in 4 patients from 2 families and 2 compound heterozygous variants. Conclusions: The clinical phenotype of COXPD32 is highly heterogenous and the severity of the disease varies from development delay, feeding difficulty, dystonia, high lactic acid, ocular symptoms and reduced mitochondrial respiratory chain enzyme activity in mild cases, which may survive into adulthood, to rapid death due to respiratory and circulatory failure in severe cases. COXPD32 needs to be considered in cases of unexplained acidosis, hyperlactatemia, feeding difficulties, development delay or regression, ocular symptoms, respiratory and circulatory failure, and symmetrical abnormal signals in the brainstem, thalamus, and (or) basal ganglia, and genetic testing can clarify the diagnosis.


Subject(s)
Humans , Male , Infant , Acidosis, Lactic , Brain , Brain Stem , Dystonia , Dystonic Disorders , Mitochondrial Diseases
2.
Experimental & Molecular Medicine ; : 487-493, 2011.
Article in English | WPRIM | ID: wpr-7980

ABSTRACT

Glucosamine, a naturally occurring amino monosaccharide, has been reported to play a role in the regulation of apoptosis more than half century. However the effect of glucosamine on tumor cells and the involved molecular mechanisms have not been thoroughly investigated. Glucosamine enters the hexosamine biosynthetic pathway (HBP) downstream of the rate-limiting step catalyzed by the GFAT (glutamine:fluctose-6-phosphate amidotransferase), providing UDP-GlcNAc substrates for O-linked beta-N-acetylglucosamine (O-GlcNAc) protein modification. Considering that O-GlcNAc modification of proteasome subunits inhibits its activity, we examined whether glucosamine induces growth inhibition via affecting proteasomal activity. In the present study, we found glucosamine inhibited proteasomal activity and the proliferation of ALVA41 prostate cancer cells. The inhibition of proteasomal activity results in the accumulation of ubiquitinated proteins, followed by induction of apoptosis. In addition, we demonstrated that glucosamine downregulated proteasome activator PA28gamma and overexpression of PA28gamma rescued the proteasomal activity and growth inhibition mediated by glucosamine. We further demonstrated that inhibition of O-GlcNAc abrogated PA28gamma suppression induced by glucosamine. These findings suggest that glucosamine may inhibit growth of ALVA41 cancer cells through downregulation of PA28gamma and inhibition of proteasomal activity via O-GlcNAc modification.


Subject(s)
Humans , Male , Acetylglucosamine/chemistry , Alloxan/pharmacology , Apoptosis/drug effects , Autoantigens/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic , Glucosamine/pharmacology , Phosphorylation , Prostatic Neoplasms/enzymology , Proteasome Endopeptidase Complex/antagonists & inhibitors , RNA, Small Interfering/genetics , Ubiquitinated Proteins/metabolism
3.
Experimental & Molecular Medicine ; : 362-369, 2009.
Article in English | WPRIM | ID: wpr-136579

ABSTRACT

TNF-related apoptosis-inducing ligand (TRAIL) has been proposed as a promising cancer therapy that preferentially induces apoptosis in cancer cells, but not most normal tissues. However, many cancers are resistant to TRAIL by mechanisms that are poorly understood. In this study, we showed that tunicamycin, a naturally occurring antibiotic, was a potent enhancer of TRAIL-induced apoptosis through downregulation of survivin. The tunicamycin-mediated sensitization to TRAIL was efficiently reduced by forced expression of survivin, suggesting that the sensitization was mediated at least in part through inhibition of survivin expression. Tunicamycin also repressed expression of cyclin D1, a cell cycle regulator commonly overexpressed in thyroid carcinoma. Furthermore, silencing cyclin D1 by RNA interference reduced survivin expression and sensitized thyroid cancer cells to TRAIL; in contrast, forced expression of cyclin D1 attenuated tunicamycin-potentiated TRAIL-induced apoptosis via over-riding downregulation of survivin. Collectively, our results demonstrated that tunicamycin promoted TRAIL-induced apoptosis, at least in part, by inhibiting the expression of cyclin D1 and subsequent survivin. Of note, tunicamycin did not sensitize the differentiated thyroid epithelial cells to TRAIL-induced apoptosis. Thus, combined treatment with tunicamycin and TRAIL may offer an attractive strategy for safely treating resistant thyroid cancers.


Subject(s)
Humans , Anti-Bacterial Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cyclin D1/antagonists & inhibitors , Down-Regulation , Microtubule-Associated Proteins/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tunicamycin/pharmacology
4.
Experimental & Molecular Medicine ; : 362-369, 2009.
Article in English | WPRIM | ID: wpr-136578

ABSTRACT

TNF-related apoptosis-inducing ligand (TRAIL) has been proposed as a promising cancer therapy that preferentially induces apoptosis in cancer cells, but not most normal tissues. However, many cancers are resistant to TRAIL by mechanisms that are poorly understood. In this study, we showed that tunicamycin, a naturally occurring antibiotic, was a potent enhancer of TRAIL-induced apoptosis through downregulation of survivin. The tunicamycin-mediated sensitization to TRAIL was efficiently reduced by forced expression of survivin, suggesting that the sensitization was mediated at least in part through inhibition of survivin expression. Tunicamycin also repressed expression of cyclin D1, a cell cycle regulator commonly overexpressed in thyroid carcinoma. Furthermore, silencing cyclin D1 by RNA interference reduced survivin expression and sensitized thyroid cancer cells to TRAIL; in contrast, forced expression of cyclin D1 attenuated tunicamycin-potentiated TRAIL-induced apoptosis via over-riding downregulation of survivin. Collectively, our results demonstrated that tunicamycin promoted TRAIL-induced apoptosis, at least in part, by inhibiting the expression of cyclin D1 and subsequent survivin. Of note, tunicamycin did not sensitize the differentiated thyroid epithelial cells to TRAIL-induced apoptosis. Thus, combined treatment with tunicamycin and TRAIL may offer an attractive strategy for safely treating resistant thyroid cancers.


Subject(s)
Humans , Anti-Bacterial Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cyclin D1/antagonists & inhibitors , Down-Regulation , Microtubule-Associated Proteins/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tunicamycin/pharmacology
5.
Chinese Journal of Integrated Traditional and Western Medicine ; (12): 396-399, 2004.
Article in Chinese | WPRIM | ID: wpr-326739

ABSTRACT

<p><b>OBJECTIVE</b>To observe the effect of combination therapy of acarbose and Liuwei Nengxiao capsule (LWNXC) in improving senile postprandial hyperglycemia and insulin sensitivity.</p><p><b>METHODS</b>Seventy-four patients with simple postprandial hyperglycemia were divided into the control group and the treated group, 37 in each group, who were treated with acarbose alone and the combination therapy respectively for 1 month, and the changes on 2 hrs postprandial glucose (2 hPG), blood pressure (BP), blood lipid, body mass index (BMI), insulin functional index as well as the adverse reaction of acarbose in the two groups were observed.</p><p><b>RESULTS</b>After treatment, the levels of 2 hPG, fasting blood glucose (FBG), BMI, total cholesterol and lowdensity lipoprotein-cholesterol were improved in the treated groups more significantly than those in the control group (P < 0.05 or P < 0.01). Insulin sensitive index (ISI) and insulin resistance were improved in the two group (P < 0.05 or P < 0.01), but the improvement in the treated group was more significant than that in the control group (P < 0.01). Moreover, the adverse reactions were less in the treated group than in the control group.</p><p><b>CONCLUSION</b>The combination therapy of acarbose and LWNXC could not only improve the postprandial hyperglycemia, but also markedly increase the insulin sensitivity, and shows obvious improving effect on parameters of blood lipid, BP and BMI. The adverse reaction could be evidently reduced by combined use with LWNXC.</p>


Subject(s)
Aged , Female , Humans , Male , Middle Aged , Acarbose , Therapeutic Uses , Blood Glucose , Metabolism , Capsules , Drug Therapy, Combination , Drugs, Chinese Herbal , Therapeutic Uses , Glycoside Hydrolase Inhibitors , Hyperglycemia , Drug Therapy , Hypoglycemic Agents , Therapeutic Uses , Insulin Resistance , Lipids , Blood , Phytotherapy , Postprandial Period
SELECTION OF CITATIONS
SEARCH DETAIL